100 research outputs found

    Acoustic event detection for multiple overlapping similar sources

    Full text link
    Many current paradigms for acoustic event detection (AED) are not adapted to the organic variability of natural sounds, and/or they assume a limit on the number of simultaneous sources: often only one source, or one source of each type, may be active. These aspects are highly undesirable for applications such as bird population monitoring. We introduce a simple method modelling the onsets, durations and offsets of acoustic events to avoid intrinsic limits on polyphony or on inter-event temporal patterns. We evaluate the method in a case study with over 3000 zebra finch calls. In comparison against a HMM-based method we find it more accurate at recovering acoustic events, and more robust for estimating calling rates.Comment: Accepted for WASPAA 201

    An open dataset for research on audio field recording archives: freefield1010

    Full text link
    We introduce a free and open dataset of 7690 audio clips sampled from the field-recording tag in the Freesound audio archive. The dataset is designed for use in research related to data mining in audio archives of field recordings / soundscapes. Audio is standardised, and audio and metadata are Creative Commons licensed. We describe the data preparation process, characterise the dataset descriptively, and illustrate its use through an auto-tagging experiment

    Making music through real-time voice timbre analysis: machine learning and timbral control

    Get PDF
    PhDPeople can achieve rich musical expression through vocal sound { see for example human beatboxing, which achieves a wide timbral variety through a range of extended techniques. Yet the vocal modality is under-exploited as a controller for music systems. If we can analyse a vocal performance suitably in real time, then this information could be used to create voice-based interfaces with the potential for intuitive and ful lling levels of expressive control. Conversely, many modern techniques for music synthesis do not imply any particular interface. Should a given parameter be controlled via a MIDI keyboard, or a slider/fader, or a rotary dial? Automatic vocal analysis could provide a fruitful basis for expressive interfaces to such electronic musical instruments. The principal questions in applying vocal-based control are how to extract musically meaningful information from the voice signal in real time, and how to convert that information suitably into control data. In this thesis we address these questions, with a focus on timbral control, and in particular we develop approaches that can be used with a wide variety of musical instruments by applying machine learning techniques to automatically derive the mappings between expressive audio input and control output. The vocal audio signal is construed to include a broad range of expression, in particular encompassing the extended techniques used in human beatboxing. The central contribution of this work is the application of supervised and unsupervised machine learning techniques to automatically map vocal timbre to synthesiser timbre and controls. Component contributions include a delayed decision-making strategy for low-latency sound classi cation, a regression-tree method to learn associations between regions of two unlabelled datasets, a fast estimator of multidimensional di erential entropy and a qualitative method for evaluating musical interfaces based on discourse analysis
    corecore